BRIEF COMMUNICATION # Studies on Compensated Cu-Cr-Al Spinel Oxide Semiconductors A. Roy and J. Ghose¹ Department of Chemistry, Indian Institute of Technology, Kharagpur-721 302, India Received April 17, 1995; revised August 8, 1995; accepted August 9, 1995 Electrical resistivity (ρ) and thermoelectric power (α) measurements were carried out in air on $CuCr_{2-x}Al_xO_4(0.06 \le x \le 0.10)$ spinel oxides in the temperature range 300-675 K. Carrier concentration (n), optical phonon frequency (γ_0), and mobility (μ) values have been calculated from resistivity and thermoelectric power data. The results show that $CuCr_{2-x}Al_xO_4$ spinel oxides are compensated semiconductors and the total compensation of the hole carriers by electrons occur when 0.09 chromium ions are replaced by aluminium ions. © 1995 Academic Press, Inc. #### INTRODUCTION The spinel oxide $CuCr_2O_4$ is a p-type semiconductor. Earlier studies have shown that on substituting Cr^{3+} by Al^{3+} the samples, $CuCr_{2-x}Al_xO_4$, become n-type (1). The present work seeks to determine the minimum amount of Al^{3+} , i.e., x, required to change p-type $CuCr_2O_4$ to an n-type semiconductor. ### **EXPERIMENTAL** The solid solutions $CuCr_{2-x}Al_xO_4$ for x = 0.06, 0.08, 0.09, and 0.10 were prepared from stoichiometric mixtures of the respective nitrates by the method described in an earlier paper (2). X-ray diffraction studies of all the samples were carried out using a Philips X-ray diffraction unit (Model PW1710) using $CuK\alpha$ radiation with Ni filter. Resistivity and thermoelectric power measurements of all the samples were carried out in air in the temperature range 300-675 K following the procedure described elsewhere (1, 3). All the samples were annealed before each measurement to eliminate a grain boundary effect. ## RESULTS AND DISCUSSION Table 1 gives the chemical composition of various aluminium-substituted CuCr₂O₄ samples, their code names, FIG. 1. Plots of $\ln(\rho/T)$ vs 1/T for (a) NA6, (b) NA8, (c) NA9, (d) NA10. optical phonon frequency (γ_0) , and mobility (μ) values at 550 K. Resistivity of all the samples followed the exponential law $$\rho = \rho_0 \exp(E_a/kT)$$, ¹ To whom correspondence should be addressed. TABLE 1 Sample Composition, Code Name, Optical Phonon Frequency (γ_0) , and Mobility (μ) for Various CuCr_{2-x}Al_xO₄ Samples | Sample composition | Code
name | γ _o (sec ⁻¹) | μ _{550 κ} (cm ² V ⁻¹ sec ⁻¹) | |--|--------------|-------------------------------------|---| | CuCr _{1.94} Al _{0.06} O ₄ | NA6 | 1.19×10^{12} | 2.5×10^{-7} | | CuCr _{1.92} Al _{0.08} O ₄ | NA8 | 7.99×10^{12} | 1.43×10^{-7} | | CuCr _{1.91} Al _{0.09} O ₄ | NA9 | 5.41×10^{10} | 1.96×10^{-7} | | CuCr _{1.90} Al _{0.10} O ₄ | NA10 | 2.42×10^{11} | 2.64×10^{-8} | FIG. 2. Plots of $\alpha e/k$ vs 1/T for (a) NA6, (b) NA8, (c) NA9, (d) NA10. FIG. 3. Plots of $ln(\mathbf{n})$ vs 1/T for (a) NA6, (b) NA8, (c) NA9, (d) NA10. in the temperature range studied, where ρ is resistivity in ohm-cm, T the absolute temperature, k the Boltzmann constant, and E_a the thermal activation energy. The $\ln(\rho/T)$ vs 1/T plots for all the samples are shown in Fig. 1. From the $\ln(\rho/T)$ vs 1/T linear plots, the optical phonon frequency values (γ_o) and mobility values (μ) have been calculated following the method of Metselaar *et al.* (4). The reduced thermoelectric power α' (= $\alpha e/k$) vs 1/T plots for all the samples are shown in Fig. 2. The results show that NA6 is a p-type semiconductor in the temperature range studied whereas NA10 is n-type in the same temperature range. NA8 and NA9 appear n-type at room temperature but on heating change to p-type. Following Basak and Ghose (5), the values of carrier concentration \mathbf{n} have been calculated from the values of α using the formula $$\mathbf{n} = Nv \exp(-\alpha/k),$$ where Nv is the density of states involved in the conduction process, k is the Boltzmann constant, and α is the Seebeck coefficient. The plots of $\ln(\mathbf{n})$ vs 1/T are shown in Fig. 3. The plots show that for all the samples except NA9, the carrier concentration remains almost constant up to 500 K and then on heating increases. NA9, however, does not show any change in the carrier concentration in the temperature range studied. The results show that the CuCr_{2-x}Al_xO₄ samples with $x \le 0.06$ are p-type at room temperature and $x \ge 0.08$ are *n*-type. The linear $\ln(\rho)$ vs 1/T, $\ln(\rho/T)$ vs 1/T, and the calculated γ_0 values indicate that all samples are semiconductors where conduction occurs by hopping of charge carriers. Murthy and co-workers (3) have shown that CuCr₂O₄ is p-type due to the presence of Cr⁴⁺ ions in the spinel oxide. From ESCA measurements Padmanaban et al. (1) have shown that the Al3+ substituted samples contain some Cu¹⁺ ions and when these exceed the Cr⁴⁺ ions present in CuCr₂O₄, the samples become n-type and hence CuCr_{2-x}Al_xO₄ spinel oxides were considered to be compensated semiconductors. In the present studies the carrier concentrations, n, for all the samples were calculated. Figure 3 shows that in NA6 the charge carrier concentration initially remains constant and then increases above 500 K; NA8 shows an initial fall and then **n** increases slightly above 550 K. NA9 shows almost no change in **n** after an initial fall and in NA10, **n** increases with increasing temperature. These results conclusively show that the $CuCr_{2-x}Al_xO_4$ spinel oxides are compensated semiconductors and the total compensation of the hole carriers by electrons occur when 0.09 chromium ions are replaced by aluminium ions. #### REFERENCES - N. Padmanaban, B. N. Avasthi, and J. Ghose, J. Solid State Chem. 81, 250 (1989). - K. S. De, J. Ghose, and K. S. R. C. Murthy, J. Solid State Chem. 47, 264 (1983). - K. S. De, J. Ghose, and K. S. R. C. Murthy, J. Solid State Chem. 43, 261 (1982). - R. Metselaar, R. E. J. Vantol, and P. Piercy, J. Solid State Chem. 38, 335 (1981). - 5. D. Basak and J. Ghose, J. Solid State Chem. 112, 222 (1994).